Thousand words about cervical cancer and epigenetics

Dorota Ewa Bronowicka-Kłys, Patrycja Pawlik, Paweł Piotr Jagodziński

Abstract


Epigenetic modifications include DNA methylation, DNA demethylation along with the major role fulfilled by TET protein. Epigenetic modifications refer to the regulation of gene expression without the alteration of the DNA sequence. Some of the most common epigenetic modifications include DNA methylation and demethylation, as well as the functional role of TET proteins. Epigenetic alterations are heritable traits, therefore one of the key elements to understanding the mechanisms of cancer development is to further our knowledge on the role and function of epigenetic modifications.
This mini‑review takes into consideration the overview of the literature on the impact of epigenetic changes in cancer development, especially in the development of CC. Researchers believe that certain compounds are capable of inhibiting the process of DNA methylation and may play an important role in future cancer therapy.

Keywords


cervical cancer; epigenetic; DNA methylation; TET

Full Text:

PDF

References


Brown AJ, Trimble CL. New technologies for cervical cancer screening. Best practice & research Clinical obstetrics & gynaecology. 2012 Apr;26(2):233–42.

Narayan G, Murty V V. Integrative genomic approaches in cervical cancer: implications for molecular pathogenesis. Future oncology. 2010 Oct;6(10):1643–52.

Jiménez‑Wences H, Peralta‑Zaragoza O, Fernández‑Tilapa G. Human papilloma virus, DNA methylation and microRNA expression in cervical cancer (Review). Oncology reports. 2014 Jun;31(6):2467–76.

Jabłonowska‑Fudzińska D, Marszałek A, Szylberg Ł. Tobacco smoking as a cofactor for the development of cervical cancer. Przegla̧d lekarski. 2015 Jan;72(3):103–5.

Ahuja N, Sharma AR, Baylin SB. Epigenetic Therapeutics: A New Weapon in the War Against Cancer. Annual review of medicine. 2016 Jan 14;67:73–89.

Saavedra KP, Brebi PM, Roa JCS. Epigenetic alterations in preneoplastic and neoplastic lesions of the cervix. Clinical Epigenetics. 2012 Jan;4(1):13.

Bronowicka‑Kłys DE, Roszak A, Pawlik P, Sajdak S, Sowińska A, Jagodziński PP. The transcript levels of ten‑eleven translocation type 1–3 (TET1–3) are associated with some clinicopathological features in cervical cancer. Work awaits on the publication.

Ciesielski P, Jóźwiak P, Krześlak A. Białka TET a modyfikacje epigenetyczne w nowotworach TET proteins and epigenetic modifications in cancers. Postepy Hig Med Dosw. 2015;69:1371–83.

Robertson KD. DNA methylation and human disease. Nature reviews Genetics. 2005 Aug;6(8):597–610.

Yang H‑J. Aberrant DNA methylation in cervical carcinogenesis. Chinese journal of cancer. 2013 Jan;32(1):42–8.

Forma E, Szymczyk A, Krześlak A. Wybrane ksenoestrogeny i ich wpływ na zdrowie człowieka. 2013;40(I):79–97.

Łukasik M, Karmalska J, Szutowski MM, Łukaszkiewicz J. Wpływ metylacji dna na funkcjonowanie genomu. BIULETYN Wydziału Farmaceutycznego Warszawskiego Uniwersytetu Medycznego. 2009;2:13–8.

Sulewska A, Niklinska W, Kozlowski M, Minarowski L, Naumnik W, Niklinski J, et al. DNA methylation in states of cell physiology and pathology. Folia Histochemica et Cytobiologica. 2007;45(3):149–59.

Chen H‑F, Wu K‑J. Epigenetics, TET proteins, and hypoxia in epithelial‑mesenchymal transition and tumorigenesis. BioMedicine. 2016 Mar;6(1):1.

Rawłuszko‑Wieczorek AA, Siera A, Horbacka K, Horst N, Krokowicz P, Jagodziński PP. Clinical significance of DNA methylation mRNA levels of TET family members in colorectal cancer. Journal of cancer research and clinical oncology. 2015 Aug;141(8):1379–92.

Frycz BA, Murawa D, Borejsza‑Wysocki M, Marciniak R, Murawa P, Drews M, et al. Decreased expression of ten‑eleven translocation 1 protein is associated with some clinicopathological features in gastric cancer. Biomedicine and Pharmacotherapy. 2014;68:209–12.

Yin F‑F, Wang N, Bi X‑N, Yu X, Xu X‑H, Wang Y‑L, et al. Serine/threonine kinases 31(STK31) may be a novel cellular target gene for the HPV16 oncogene E7 with potential as a DNA hypomethylation biomarker in cervical cancer. Virology journal. 2016 Jul;13(1):60.

Li J‑Y, Huang T, Zhang C, Jiang D‑J, Hong Q‑X, Ji H‑H, et al. Association between RASSF1A Promoter Hypermethylation and Oncogenic HPV Infection Status in Invasive Cervical Cancer: a Meta‑analysis. Asian Pacific journal of cancer prevention : APJCP. 2015 Jul;16(14):5749–54.

Blanco‑Luquin I, Guarch R, Ojer A, Pérez‑Janices N, Martín‑Sánchez E, Maria‑Ruiz S, et al. Differential role of gene hypermethylation in adenocarcinomas, squamous cell carcinomas and cervical intraepithelial lesions of the uterine cervix. Pathology international. 2015 Sep;65(9):476–85.

Narayan G, Arias‑Pulido H, Nandula S V, Basso K, Sugirtharaj DD, Vargas H, et al. Promoter hypermethylation of FANCF: disruption of Fanconi Anemia‑BRCA pathway in cervical cancer. Cancer research. 2004 May;64(9):2994–7.

Jha AK, Nikbakht M, Jain V, Sehgal A, Capalash N, Kaur J. Promoter hypermethylation of p73 and p53 genes in cervical cancer patients among north Indian population. Molecular biology reports. 2012 Sep;39(9):9145–57.




DOI: http://dx.doi.org/10.20883/jms.2016.141

Refbacks



Copyright (c) 2016 Journal of Medical Science

Copyright 2018 by Journal of Medical Sciences