Products of plant origin – benefits and the potential risk for the consumer

Monika Karasiewicz, Anna Bogacz, Jana Krzysztoszek, Daniel Pędziwiatr, Bogusław Czerny


Phytochemical compounds are widely used in traditional medicine in the treatment of many ailments. In recent years, an increasing interest is observed in the use of new natural bioactive substances and whole standardized extracts in the prevention and therapy of diseases. Some of these are the components of the diet, diet supplements or at higher doses are used as herbal medicines. Many phytochemicals have documented a beneficial effect on health, but they must be used properly. Therefore, it is important to inform about differentiating between herbal medicine and dietary supplement. Further, the possibility of interactions with synthetic drugs and the mechanisms of these effects is necessary to describe for the safety of phytotherapy. The goal of our paper is to show high prophylactic and medicinal potential of natural active compounds of plant origin. We also want to draw attention to the safety of their use by the consumer. Therefore, we present some studies on the benefical properties of natural active compounds, mainly in the prevention and treatment of cancers and neurodegenerative diseases. The results of the described studies are extensively discussed and their suitability for further testing in vivo and in clinical trials is examined. At the same time we show selected interaction of common medicinal plants or their raw materials with synthetic drugs.


herbal products; pro-health effect; chemoprevention; herb-drug interaction

Full Text:



Baraniak J, Kania M. Suplementy diety, środki spożywcze specjalnego przeznaczenia żywieniowego a lek roślinny w świetle współczesnej fitoterapii. Post Fitoter. 2015;3:177–183.

Kotecha R, Takami A, Espinoza JL. Dietary phytochemicals and cancer chemoprevention: a review of the clinical evidence. Oncotarget. 2016 May; doi: 10.18632/oncotarget.9593.

Ansari N, Khodagholi F. Natural products as promising drug candidates for the treatment of Alzheimer's disease: molecular mechanism aspect. Curr Neuropharmacol. 2013 Jul; 11(4):414–29.

Shehzad A, Wahid F, Lee YS. Curcumin in cancer chemoprevention: molecular targets, pharmacokinetics, bioavailability, and clinical trials. Arch Pharm (Weinheim). 2010 Sep; 343(9):489–99.

Bar‑Sela G, Epelbaum R, Schaffer M. Curcumin as an anti‑cancer agent: review of the gap between basic and clinical applications. Curr Med Chem. 2010;17(3):190–7.

Hasima N, Aggarwal BB. Targeting proteasomal pathways by dietary curcumin for cancer prevention and treatment. Curr Med Chem. 2014;21(14):1583–94.

Bortel N, Armeanu‑Ebinger S, Schmid E, Kirchner B, Frank J, Kocher A et al. Effects of curcumin in pediatric epithelial liver tumors: inhibition of tumor growth and alpha‑fetoprotein in vitro and in vivo involving the NFkappaB- and the beta‑catenin pathways. Oncotarget. 2015 Dec;6(38):40680–91.

Hsu CH, Cheng AL. Clinical studies with curcumin. Adv Exp Med Biol. 2007;595:471–80.

Marathe SA, Dasgupta I, Gnanadhas DP, Chakravortty D. Multifaceted roles of curcumin: two sides of a coin! Expert Opin Biol Ther. 2011 Nov;11(11):1485–99.

Sharma RA, Steward WP, Gescher AJ. Pharmacokinetics and pharmacodynamics of curcumin. Adv Exp Med Biol. 2007;595:453–70.

Yang C, Su X, Liu A, Zhang L, Yu A, Xi Y, Zhai G. Advances in clinical study of curcumin. Curr Pharm Des. 2013; 19(11):1966–73.

Dhillon N, Aggarwal BB, Newman RA, Wolff RA, Kunnumakkara AB, Abbruzzese JL et al. Phase II trial of curcumin in patients with advanced pancreatic cancer. Clin Cancer Res. 2008 Jul; 14(14):4491–9.

Sharma RA, McLelland HR, Hill KA, Ireson CR, Euden SA, Manson MM et al. Pharmacodynamic and pharmacokinetic study of oral Curcuma extract in patients with colorectal cancer. Clin Cancer Res. 2001 Jul;7(7):1894–900.

Kelly GS. Quercetin. Monograph. Altern. Med. Rev. 2011 Jun;16(2):172–94.

Bischoff SC. Quercetin potentials in the prevention and therapy of disease. Curr Opin Clin Nutr Metab Care. 2008 Nov;11(6):733–40.

Russo M, Spagnuolo C, Tedesco I, Bilotto S, Russo GL. The flavonoid quercetin in disease prevention and therapy facts and fancies. Biochem Pharmacol. 2012 Jan 1;83(1):6–15.

Rivera A, Castillo‑Pichardo L, Gerena Y, Dharmawardhane S. Anti‑Breast Cancer Potential of Quercetin via the Akt/AMPK/Mammalian Target of Rapamycin (mTOR) Signaling Cascade. PLoS One. 2016 Jun 10;11(6):e0157251.

Hollman PC, van Trijp JM, Buysman MN, van der Gaag MS, Mengelers MJ, deVries JH, Katan MB. Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett. 1997;418(1–2):152–6.

Medina‑Aguilar R, Pérez‑Plasencia C, Marchat LA, Gariglio P, García Mena J, Rodríguez Cuevas S et al. Methylation Landscape of Human Breast Cancer Cells in Response to Dietary Compound Resveratrol. PLoS One. 2016 Jun 29;11(6):e0157866.

Robb EL, Stuart JA. Trans‑resveratrol as a neuroprotectant. Molecules. 2010 Mar 3;15(3):1196–212.

Das DK, Mukherjee S, Ray D. Resveratrol and red wine, healthy heart and longevity. Heart Fail Rev. 2010 Sep;15(5):467–77.

Gharaee‑Kermani M, Moore BB, Macoska JA. Resveratrol‑Mediated Repression and Reversion of Prostatic Myofibroblast Phenoconversion. PLoS One. 2016 Jul 1;11(7):e0158357.

Ronghe A, Chatterjee A, Bhat NK, Padhye S, Bhat HK. Tamoxifen synergizes with 4-(E)-{(4-hydroxyphenylimino)-methylbenzene, 1,2-diol} and 4-(E)-{(p‑tolylimino)-methylbenzene-1,2-diol}, novel azaresveratrol analogs, in inhibiting the proliferation of breast cancer cells. Oncotarget. 2016 Jun 16. doi: 10.18632/oncotarget.10106.

Patel KR, Scott E, Brown VA, Gescher AJ, Steward WP, Brown K. Clinical trials of resveratrol. Ann N Y Acad Sci. 2011 Jan;1215:161–9.

Chow HH, Garland LL, Hsu CH, Vining DR, Chew WM, Miller JA et al. Resveratrol modulates drug- and carcinogen‑metabolizing enzymes in a healthy volunteer study. Cancer Prev Res (Phila). 2010 Sep;3(9):1168–75.

Hudlikar RR, Venkadakrishnan V, Kaushal RK, Thorat RA, Kannan S, Ingle AD et al. Polymeric black tea polyphenols (PBPs) inhibit benzo(a)pyrene and 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone induced lung carcinogenesis potentially through down‑regulation of p38 and Akt phosphorylation in A/J mice. Mol Carcinog. 2016 Jul 5. doi: 10.1002/mc.22521.

Watson KL, Stalker L, Jones RA, Moorehead RA. High levels of dietary soy decrease mammary tumor latency and increase incidence in MTB‑IGFIR transgenic mice. BMC Cancer. 2015 Feb;15:37.

Li DH, Yee JA, McGuire MH, Murphy PA, Yan L. Soybean isoflavones reduce experimental metastasis in mice. J Nutr. 1999 May;129(5):1075–8.

Yang G, Shu XO, Li HL, Chow WH, Wen W, Xiang YB et al. Prediagnosis soy food consumption and lung cancer survival in women. J Clin Oncol. 2013 Apr 20;31(12):1548–53.

Liu D, Yan L, Wang L, Tai W, Wang W, Yang C. Genistein enhances the effect of cisplatin on the inhibition of non‑small cell lung cancer A549 cell growth in vitro and in vivo. Oncol Lett. 2014 Dec; 8(6):2806–2810.

Martínez‑Montemayor MM, Otero‑Franqui E, Martinez J, De La Mota‑Peynado A, Cubano LA, Dharmawardhane S. Individual and combined soy isoflavones exert differential effects on metastatic cancer progression. Clin Exp Metastasis. 2010 Oct;27(7):465–80.

Koo J, Cabarcas‑Petroski S, Petrie JL, Diette N, White RJ, Schramm L. Induction of proto‑oncogene BRF2 in breast cancer cells by the dietary soybean isoflavone daidzein. BMC Cancer. 2015 Nov 16;15:905.

Singh‑Gupta V, Joiner MC, Runyan L, Yunker CK, Sarkar FH, Miller S et al. Soy isoflavones augment radiation effect by inhibiting APE1/Ref-1 DNA repair activity in non‑small cell lung cancer. J Thorac Oncol. 2011 Apr;6(4):688–98.

Hillman GG, Singh‑Gupta V. Soy isoflavones sensitize cancer cells to radiotherapy. Free Radic Biol Med. 2011 Jul 15;51(2):289–98.

Messina M, Kucuk O, Lampe JW. An overview of the health effects of isoflavones with an emphasis on prostate cancer risk and prostate‑specific antigen levels. J AOAC Int. 2006 Jul‑Aug;89(4):1121–34.

Hillman GG, Singh‑Gupta V, Lonardo F, Hoogstra DJ, Abernathy LM, Yunker CK et al. Radioprotection of lung tissue by soy isoflavones. J Thorac Oncol. 2013 Nov;8(11):1356–64.

Chen P, Hu MD, Deng XF, Li B. Genistein reinforces the inhibitory effect of Cisplatin on liver cancer recurrence and metastasis after curative hepatectomy. Asian Pac J Cancer Prev. 2013;14(2):759–64.

Mai Z, Blackburn GL, Zhou JR. Genistein sensitizes inhibitory effect of tamoxifen on the growth of estrogen receptor‑positive and HER2-overexpressing human breast cancer cells. Mol Carcinog. 2007 Jul;46(7):534–42.

Costa SL, Silva VD, Dos Santos Souza C, Santos CC, Paris I, Muñoz P, Segura‑Aguilar J. Impact of Plant‑Derived Flavonoids on Neurodegenerative Diseases. Neurotox Res. 2016 Jul;30(1):41–52.

Heng Y, Zhang QS, Mu Z, Hu JF, Yuan YH, Chen NH. Ginsenoside Rg1 attenuates motor impairment and neuroinflammation in the MPTP‑probenecid‑induced parkinsonism mouse model by targeting α‑synuclein abnormalities in the substantia nigra. Toxicol Lett. 2016 Jan 22;243:7–21.

Pérez‑H J, Carrillo‑S C, García E, Ruiz‑Mar G, Pérez‑Tamayo R, Chavarría A. Neuroprotective effect of silymarin in a MPTP mouse model of Parkinson's disease. Toxicology. 2014 May;319:38–43.

Lee Y, Park HR, Chun HJ, Lee J. Silibinin prevents dopaminergic neuronal loss in a mouse model of Parkinson's disease via mitochondrial stabilization. J Neurosci Res. 2015 May;93(5):755–65.

Hou YC, Liou KT, Chern CM, Wang YH, Liao JF, Chang S et al. Preventive effect of silymarin in cerebral ischemia‑reperfusion‑induced brain injury in rats possibly through impairing NF‑κB and STAT-1 activation. Phytomedicine. 2010 Oct;17(12):963–73.

Shi C, Wu F, Xu J, Zou J. Bilobalide regulates soluble amyloid precursor protein release via phosphatidyl inositol 3 kinase‑dependent pathway. Neurochem Int. 2011 Aug;59(1):59–64.

Chen YS, Liu CJ, Cheng CY, Yao CH. Effect of bilobalide on peripheral nerve regeneration. Biomaterials. 2004 Feb; 25(3):509–14.

Dhawan S, Kapil R, Singh B. Formulation development and systematic optimization of solid lipid nanoparticles of quercetin for improved brain delivery. J. Pharm. Pharmacol. 2011 Mar;63(3):342–51.

Jiménez‑Aliaga K, Bermejo‑Bescós P, Benedí J, Martín‑Aragón S. Quercetin and rutin exhibit antiamyloidogenic and fibril‑disaggregating effects in vitro and potent antioxidant activity in APPswe cells. Life Sci. 2011 Dec;89(25–26):939–45.

Ansari MA, Abdul HM, Joshi G, Opii WO, Butterfield DA. Protective effect of quercetin in primary neurons against Abeta(1–42): relevance to Alzheimer's disease. J Nutr Biochem. 2009 Apr; 20(4): 269–75.

Tchantchou F, Lacor PN, Cao Z, Lao L, Hou Y, Cui C et al. Stimulation of neurogenesis and synaptogenesis by bilobalide and quercetin via common final pathway in hippocampal neurons. J. Alzheimers Dis. 2009;18(4):787–98.

Lambert JD, Lee MJ, Lu H, Meng X, Hong JJ, Seril DN et al. Epigallocatechin-3-gallate is absorbed but extensively glucuronidated following oral administration to mice. J. Nutr. 2003 Dec;133(12):4172–7.

Biasibetti R, Tramontina AC, Costa AP, Dutra MF, Quincozes‑Santos A, Nardin P, Bernardi CL et al. Green tea (-)epigallocatechin-3-gallate reverses oxidative stress and reduces acetylcholinesterase activity in a streptozotocin‑induced model of dementia. Behav. Brain Res. 2012 Jan; 236C:186–193.

Lee JW, Lee YK, Ban JO, Ha TY, Yun YP, Han SB et al. Green tea (-)-epigallocatechin-3-gallate inhibits beta‑amyloid‑induced cognitive dysfunction through modification of secretase activity via inhibition of ERK and NF‑kappaB pathways in mice. J. Nutr. 2009 Oct;139(10):1987–93.

Dragicevic N, Smith A, Lin X, Yuan F, Copes N, Delic V et al. Green tea epigallocatechin-3-gallate (EGCG) and other flavonoids reduce Alzheimer's amyloid‑induced mitochondrial dysfunction. J. Alzheimers Dis. 2011; 26(3):507–21.

Bigford GE, Del Rossi G. Supplemental substances derived from foods as adjunctive therapeutic agents for treatment of neurodegenerative diseases and disorders. Adv Nutr. 2014 Jul 14;5(4):394–403.

Bulgakov VP, Inyushkina YV, Fedoreyev SA. Rosmarinic acid and its derivatives: biotechnology and applications. Crit Rev Biotechnol. 2012 Sep;32(3): 203–17.

Alkam T, Nitta A, Mizoguchi H, Itoh A, Nabeshima T. A natural scavenger of peroxynitrites, rosmarinic acid, protects against impairment of memory induced by Abeta(25–35) Behav. Brain Res. 2007 Jun;180(2):139–45.

Iuvone T, De Filippis D, Esposito G, D'Amico A, Izzo AA. The spice sage and its active ingredient rosmarinic acid protect PC12 cells from amyloid‑beta peptide‑induced neurotoxicity. J. Pharmacol. Exp. Ther. 2006 Jun;317(3):1143–9.

Cho HJ and Yoon IS. Pharmacokinetic Interactions of Herbs with Cytochrome P450 and P‑Glycoprotein. Evid Based Complement Alternat Med. 2015; 2015:736431.

Hermann R and von Richter O. Clinical evidence of herbal drugs as perpetrators of pharmacokinetic drug interactions. Planta Med. 2012 Sep;78(13):1458–1477.

Bogacz A, Karasiewicz M, Dziekan K, Procyk D, Górska‑Paukszta M, Kowalska A et al. Impact of Panax ginseng and Ginkgo biloba extracts on expression level of transcriptional factors and xenobiotic‑metabolizing cytochrome P450 enzymes. Herba Polonica. 2016; 62(1): 42–54.

Chang TKH, Chen J. Teng XW. Distinct role of bilobalide and ginkgolide A in the modulation of rat CYP2B1 and CYP3A23 gene expression by Ginkgo biloba extract in cultured hepatocytes. Drug Metab Dispos. 2006 Feb; 34: 234–242.

Gaudineau C, Beckerman R, Welbourn S, Auclair K. Inhibition of human P450 enzymes by multiple constituents of the Ginkgo biloba extract. Biochem Biophys Res Commun. 2004 Jun; 318(4): 1072–1078.

Li L, Stanton JD, Tolson AH, Luo Y, Wang H. Bioactive terpenoids and flavonoids from Ginkgo biloba extract induce the expression of hepatic drug‑metabolizing enzymes through pregnane X receptor, constitutive androstane receptor, and aryl hydrocarbon receptor‑mediated pathways. Pharm Res. 2009 Apr; 26(4):872–82.

Bogacz A, Deka‑Pawlik D, Bartkowiak‑Wieczorek J, Karasiewicz M, Kujawski R, Kowalska A et al. The effect of herbal materials on the P‑glycoprotein activity and function. Herba Polonica. 2013; 59(4):129–141.

Bogacz A, Karasiewicz M, Kujawski R, Bartkowiak‑Wieczorek J, Cichocka J, Kowalska A et al. Molecular mechanisms of regulation of CYP enzymes of phase I metabolism of xenobiotics – synthetic drugs and herbal preparations. Herba Polonica. 2012; 58(3):46–59.

Banerjee SK, Maulik M, Manchanda SC, Dinda AK, Das TK, Maulik SK. Garlic‑induced alteration in rat liver and kidney morphology and associated changes in endogenous antioxidant status. Food Chem Toxicol. 2001 Aug; 39(8): 793–797.

Blecharz‑Klin K, Piechal A, Pyrzanowska J, Widy‑Tyszkiewicz E. Interakcje leków roślinnych stosowanych w chorobach układu oddechowego. Herba Polonica. 2005; 51(3): 89–107.

Heck AM, DeWitt BA, Lukes AL. Potential interactions between alternative therapies and warfarin. Am J Health Syst Pharm. 2000 Jul;57(13):1221–7.

Piscitelli SC, Burstein AH, Welden N, Gallicano KD, Falloon J. The effect of garlic supplements on the pharmacokinetics of saquinavir. Clin Infect Dis. 2002 Jan;34(2):234–8.

Pascussi JM, Gerbal‑Chaloin S, Drocourt L, Maurel P, Vilarem MJ. The expression of CYP2B6, CYP2C9 and CYP3A4 genes: a tangle of networks of nuclear and steroid receptors. Biochim Biophys Acta. 2003 Feb;1619(3):243–253.

Ho BE, Shen DD, McCune JS, Bui T, Risler L, Yang Z, Ho RJ. Effects of Garlic on Cytochromes P450 2C9- and 3A4-Mediated Drug Metabolism in Human Hepatocytes. Sci Pharm. 2010;78(3):473–81.

Lamer‑Zarawska E, Kowal‑Gierczak B, Niedworok J. Fitoterapia i leki roślinne. Wydawnictwo lekarskie PZWL, Warszawa. 2007.

Nishikawa M, Ariyoshi N, Kotani A, Ishii I, Nakamura H, Nakasa H et al. Effects of continuous ingestion of green tea or grape seed extracts on the pharmacokinetics of midazolam. Drug Metabolism and Pharmacokinetics. 2004 Aug;19 (4):280–289.

Bogacz A, Karasiewicz M, Bartkowiak‑Wieczorek J, Ożarowski M, Seremak‑Mrozikiewicz A, Kujawski R et al. Effect of Camellia sinensis extract on the expression level of transcripti on factors and cytochrome P450 genes coding phase I drug‑metabolizing enzymes. Herba Polonica. 2013;59(4):45–59.

Netsch M I, Gutmann H, Schmidlin C B, Aydogan C and Drewe J. Induction of CYP1A by green tea extract in human intestinal cell lines. Planta Medica. 2006 May; 72(6):514–520.

Debersac P, Heydel J M, Amiot M J Goudonnet H, Artur Y, Suschetet M, Siess MH. Induction of cytochrome P450 and/or detoxication enzymes by various extracts of rosemary: description of specific patterns. Food and Chemical Toxicology. 2001 Sep;39(9):907–918.

Pan Y, Abd‑Rashid BA, Ismail Z et al. In vitro effects of active constituents and extracts of Orthosiphon stamineus on the activities of three major human cDNA‑expressed cytochrome P450 enzymes. Chem Biol Interact. 2011 Mar 15;190(1):1–8.

Plouzek CA, Ciolino HP, Clarke R, Yeh GG. Inhibition of P‑glycoprotein activity and reversal of multidrug resistance in vitro by rosemary extract. Eur J Cancer. 1999 Oct;35(10):1541–5.

Li F‑R, Fu Y‑Y, Jiang D‑H, Wu Z, Zhou YJ, Guo L et al. Reversal effect of rosmarinic acid on multidrug resistance in SGC7901/Adr cell. J Asian Nat Prod Res. 2013;15(3):276–85.

Zhang W, Tan TMC, Lim L‑Y. Impact of curcumin‑induced changes in P‑glycoprotein and CYP3A expression on the pharmacokinetics of peroral celiprolol and midazolam in rats. Drug Metab Dispos. 2007 Jan;35(1):110–5.

Tang XQ, Bi H, Feng JQ, Cao JG. Effect of curcumin on multidrug resistance in resistant human gastric carcinoma cell line SGC7901/VCR. Acta Pharmacol Sin. 2005 Aug;26(8):1009–16.

Izzo AA, Ernst E. Interactions between herbal medicines and prescribed drugs: an updated systematic review. Drugs. 2009;69(13):1777–98.

Kim H J, Chun YJ, Park JD, Kim SI, Roh JK, Jeong TC. Protection of rat liver microsomes against carbon tetrachloride‑lnduced lipid peroxidation by red ginseng. Planta Med. 1997 Oct;63(5):415–8.

Yu C‑T, Chen J, Teng XW, Tong V, Chang TKH. Lack of evidence for induction of CYP2B1, CYP3A23, and CYP1A2 gene expression by Panax ginseng and Panax quinquefolius extracts in adult rats and primary cultures of rat hepatocytes. Drug Metab Dispos. 2005 Jan;33(1):19–22.

Gorski JC, Huang SM, Pinto A, Hamman MA, Hilligoss JK, Zaheer NA et al. The effect of echinacea (Echinacea purpurea root) on cytochrome P450 activity in vivo. Clin Pharmacol Ther. 2004 Jan;75(1):89–100.

Ożarowski M, Dubiel A, Niewiński P, Mścisz A, Mrozikiewicz P. Profil bezpieczeństwa preparatów zawierających przetwory z jeżówek –systematyczna analiza interakcji i działań niepożądanych. Herba Polonica. 2006;52(3):102–103.

Bogacz A, Mrozikiewicz PM, Karasiewicz M, Bartkowiak‑Wieczorek J, Majchrzycki M, Mikolajczak PŁ et al. The Influence of Standardized Valeriana officinalis Extract on the CYP3A1 gene expression by nuclear receptors in in vivo model. Biomed Res Int. 2014;2014:819093.

Borrelli F and Izzo A A. Herb–Drug Interactions with St John’s Wort (Hypericum perforatum): an update on clinical observations. AAPS J. 2009 Dec;11(4):710–27.

Caraci F, Crupi R, Drago F, Spina E. Metabolic drug interactions between antidepressants and anticancer drugs: focus on selective serotonin reuptake inhibitors and hypericum extract. Curr Drug Metab. 2011 Jul;12(6):570–7.



  • There are currently no refbacks.

Copyright (c) 2017 Journal of Medical Science

Copyright 2016 by Journal of Medical Sciences